
Exam Analysis on Manifolds

WIANVAR-07.2018-2019.1B

January 29, 2019

This exam consists of four assignments. You get 10 points for free.

Assignment 1. (20 pt.)

Let M = {(x, y, z) ∈ R3 | x2 + y2 = 1}, and let i : M → R3 be the inclusion

map. We turn M into a topological space by endowing it with the subspace

topology inherited from R3. You may assume that this subspace topology of

M is second-countable, and that M with this topology is a Hausdor� space.

1. Construct an atlas on M such that:

(i) (7 pt.) M becomes a two-dimensional C∞-manifold;

(ii) (5 pt.) the inclusion map i is a C∞-map.

2. (8 pt.) Let σ be the one-form on R3 given by σ = xdx+ ydy.

Prove that i∗σ = 0.

Solution.

1.(i) Note thatM is the Cartesian product of the unit circle in R2 and the real

line R. We will construct an atlas onM based on this observation. To this end,

let U1 = {(cosu, sinu, v) | 0 < u < 2π, v ∈ R} and let U2 = {(cosu, sinu, v) |

−π < u < π, v ∈ R}. Let ϕi : Ui → R2 be de�ned by

ϕi(cosu, sinu, v) = (u, v).

Then ϕi is a homeomorphism onto its image Vi, where V1 = (0, 2π) × R and

V2 = (−π, π)×R. Note that V1∩V2 = ((0, π)×R)∪((π, 2π)×R). Furthermore,

ϕ2 ◦ϕ−1
1 (u, v) =

u, if (u, v) ∈ (0, π)× R,

u− 2π, if (u, v) ∈ (π, 2π)× R.

Hence ϕ2 ◦ ϕ−1
1 is a di�eomorphism. Therefore, {(U1, ϕ1), (U2, ϕ2)} is a C∞-

atlas on M, turning M into a two-dimensional manifold.

1.(ii). To prove that the inclusion map is C∞, observe that id ◦ i◦ϕ−1
i : Vi → R3

is equal to gi : Vi → R3, de�ned by gi(u, v) = (cosu, sinu, v). Note that on the

manifold R3 we use the atlas (R3, id). Also note that ϕ−1
i and gi only di�er in

the sense that they have di�erent ranges. Since gi is C
∞, the claim follows.

2. We shall prove that both local representatives (ϕ−1
i )∗(i∗σ), i = 1, 2, are

zero. If f is either of the maps ϕ−1
i , then f∗(i∗σ) = (i ◦ f)∗(σ), and (i ◦

f)(u, v) = (cosu, sinu, v). Hence, f∗(i∗σ) = cosud(cosu) + sinud(sinu) =

− cosu sinudu+ sinu cosudu = 0.
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Assignment 2. (25 pt.)

Let X be a vector �eld on R3, and let Ω = dx1 ∧ dx2 ∧ dx3, a 3-form on R3.
Recall that, for a k-form ω, k > 0, the (k− 1)-form ιXω is de�ned by

ιXω(X1, . . . , Xk−1) = ω(X,X1, . . . , Xk−1).

1. (8 pt.) Let σ1, . . . , σ3 be one-forms on R3. Show that

ιX(σ1 ∧ σ2 ∧ σ3) = σ1(X)σ2 ∧ σ3 − σ2(X)σ1 ∧ σ3 + σ3(X)σ1 ∧ σ2.

2. (7 pt.) Prove that for every 2-form ω on R3 there is a vector �eld Z on R3

such that

ω = ιZΩ.

3. (10 pt.) Prove that d(ιXΩ) = 0 if and only if there is a vector �eld Y on R3

such that X = ∇× Y (the rotation of Y, also known as the curl of Y).

Solution.

1. Let X1 and X2 be arbitrary vector �elds on R3, then

ιX(σ1 ∧ σ2 ∧ σ3)(X1, X2) =

∣∣∣∣∣∣
σ1(X) σ1(X1) σ1(X2)

σ2(X) σ2(X1) σ2(X2)

σ3(X) σ3(X1) σ3(X2)

∣∣∣∣∣∣
= σ1(X)

∣∣∣∣σ2(X1) σ2(X2)

σ2(X1) σ3(X2)

∣∣∣∣− σ2(X) ∣∣∣∣σ1(X1) σ1(X2)

σ3(X1) σ3(X2)

∣∣∣∣
+ σ3(X)

∣∣∣∣σ1(X1) σ1(X2)

σ2(X1) σ2(X2)

∣∣∣∣
= σ1(X)σ2 ∧ σ3(X1, X2) − σ2(X)σ1 ∧ σ3(X1, X2) + σ3(X)σ1 ∧ σ2(X1, X2)

= (σ1(X)σ2 ∧ σ3 − σ2(X)σ1 ∧ σ3 + σ3(X)σ1 ∧ σ2) (X1, X2).

2. Let ω = f1 dx
2∧dx3− f2 dx

1∧dx3+ f3 dx
1∧dx2, Taking σi = dx

i in part 1,

we see that ω = ιXΩ if we take X such that dxi(X) = fi, i.e., if X =
∑3
i=1 fi

∂
∂xi

.

3. Let Y = f1
∂
∂x1

+ f2
∂
∂x2

+ f3
∂
∂x3

. Then

∇× Y = (
∂f3

∂x2
−
∂f2

∂x3
)
∂

∂x1
− (

∂f3

∂x1
−
∂f1

∂x3
)
∂

∂x2
+ (

∂f2

∂x1
−
∂f1

∂x2
)
∂

∂x3
.

Therefore,

ι∇×YΩ = (
∂f3

∂x2
−
∂f2

∂x3
)dx2∧dx3−(

∂f3

∂x1
−
∂f1

∂x3
)dx1∧dx3+(

∂f2

∂x1
−
∂f1

∂x2
)dx1∧dx2.

In other words, ι∇×YΩ = dη, for η = f1 dx
1 + f2 dx

2 + f3 dx
3. This shows that

dιXΩ = 0 for X = ∇× Y.
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Conversely, if dιXΩ = 0, then by Poincar�e's Lemma there is a one-form η

on R3 such that ιXΩ = dη. Let η = f1 dx
1 + f2 dx

2 + f3 dx
3, then X = ∇ × Y

for Y = f1
∂
∂x1

+ f2
∂
∂x2

+ f3
∂
∂x3

.

Assignments 3 and 4 on next page
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Assignment 3. (20 pt.)

In this exercise M and N are C∞-manifolds, and F : N → M is a C∞-map.

For p ∈ N the map F∗ : C∞
F(p)(N) → C∞

p (M) is the usual pullback given by

F∗(g) = g ◦ F.

1. (5 pt.) Assume that F∗ is surjective. Prove that F∗,p : TpN → TF(p)M is

injective.

Let f : Rn+1 → R be a C∞-function for which 0 is a regular value. Therefore,

N = F−1(0) is a C∞-submanifold of Rn+1.
Recall that a function g : U→ R, de�ned on an open subset U of N, is C∞

if for every p ∈ U there is a neighborhood V of p in Rn+1 and a C∞-function

~g : V → R such that g = ~g on V ∩U. Let i : N→ Rn+1 be the inclusion map.

2. (5 pt.) Prove that i∗ : C∞
p (Rn+1) → C∞

p (N) is surjective for p ∈ N.

3. (3 pt.) Prove that i∗,p : Tp(N) → Tp(Rn+1) is injective for p ∈ N.

4. (7 pt.) Consider the map f∗,p : TpRn+1 → T0R for p ∈ N.
Prove that i∗,p(Tp(N)) = ker f∗,p.

Solution.

1. Since F∗ is a linear map, we have to prove that ker F∗ = {0}. Let Xp ∈ TpN
and assume F∗(Xp) = 0. We have to show that Xp = 0, , i.e., that Xp(f) = 0

for all f ∈ C∞
p (N). So let f ∈ C∞

p (N), then there is a g ∈ C∞
F(p)(M) such that

f = F ◦ g. Then, for all f ∈ C∞
p (N):

Xp(f) = Xp(F ◦ g) = (F∗(Xp))(g) = 0.

Therefore, Xp = 0, so F∗ is injective.

2. Let a germ in C∞
p (N) be represented by a C∞ function g : U→ R, where U

is a neighborhood of p in N. Then there is a C∞ function ~g : V → R de�ned on

a neighborhood V in Rn+1, such that g = ~g on U∩V. In other words, g = ~g ◦ i
on the neighborhood U ∩ V of p in N, so [g] = [~g ◦ i] = i∗[~g].

3. This result is a straightforward consequence of Parts 1 and 2 of this exercise.

4. Note that ker f∗,p is an n-dimensional subspace of TpRn+1. Part 3 implies

that i∗,p(TpN) is also an n-dimensional subspace of TpRn+1, so it is su�cient

to prove that i∗,p(TpN) ⊂ ker f∗,p. This inclusion follows from the fact that

f ◦ i : N→ R is the zero-function, so f∗,p ◦ i∗,p = (f ◦ i)∗,p = 0.

Assignment 4. (25 pt.)

Let f : R2 → R be a C∞-function such that f|S1 = 0. Here S1 is the unit circle in
R2, the boundary of the closed unit disc B2 in R2. The goal of this assignment

is to prove that if f is harmonic, i.e., if the Laplacian of f is zero on B2, then
f = 0 on B2.
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As usual, the Laplacian ∆f of f is given by

∆f =
∂2f

∂x2
+
∂2f

∂y2
.

1. (8 pt.) Determine a one-form ω on R2 such that dω = (∆f)dx∧ dy.

2. (9 pt.) Prove that∫
B2

(
f∆f+ (

∂f

∂x
)2 + (

∂f

∂y
)2
)
dx∧ dy = 0.

Hint: prove that the integrand is equal to dψ for ψ = fω and ω as in Part 1

of this assignment.

3. (8 pt.) Prove: If ∆f = 0 on B2, then f|B2 = 0.

Solution.

1. Let ω = adx+ bdy for C∞-functions a, b : R2 → R. Then

dω = (−
∂a

∂y
+
∂b

∂x
)dx∧ dy,

so we have to determine a and b such that

−
∂a

∂y
+
∂b

∂x
=
∂2f

∂x2
+
∂2f

∂y2
.

A solution is a = − ∂f
∂y

and b = ∂f
∂x

, i.e.,

ω = −
∂f

∂y
dx+

∂f

∂x
dy.

2. A straightforward computation shows that the integrand is equal to dψ, with

ψ = fω. Now apply Stokes's Theorem:∫
B2

(
f∆f+ (

∂f

∂x
)2 + (

∂f

∂y
)2
)
dx∧ dy =

∫
B2

dψ =

∫
S1
ψ =

∫
S1
fω = 0. (1)

3. If ∆f = 0 on B2, we get from (1):∫
B2

(
(
∂f

∂x
)2 + (

∂f

∂y
)2
)
dx∧ dy = 0.

Since the integrand is non-negative, it has to be identically zero. This implies

that
∂f

∂x
=
∂f

∂y
= 0

on B2. Hence, f is constant on B2. Since f|S1 = 0, this constant is equal to

zero.
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