Exam Analysis on Manifolds
WIANVAR-07.2018-2019.1B
January 29, 2019

This exam consists of four assignments. You get 10 points for free.

Assignment 1. (20 pt.)

Let M = {(x,y,z) € R® | x* +y? = 1}, and let i : M — R> be the inclusion
map. We turn M into a topological space by endowing it with the subspace
topology inherited from R3. You may assume that this subspace topology of
M is second-countable, and that M with this topology is a Hausdorff space.

1. Construct an atlas on M such that:

(i) (7 pt.) M becomes a two-dimensional C*°-manifold;
(ii) (5 pt.) the inclusion map iis a C*°-map.

2. (8 pt.) Let o be the one-form on R3 given by o = x dx +y dy.
Prove that i*o = 0.

Solution.

1.(i) Note that M is the Cartesian product of the unit circle in R? and the real
line R. We will construct an atlas on M based on this observation. To this end,
let U; = {(cosu,sinu,v) | 0 < u < 27w,v € R} and let U; = {(cosu,sinu,v) |
—m<u<mve R} Let @;: U; — R? be defined by

@i(cosu,sinu,v) = (u,v).

Then ¢; is a homeomorphism onto its image V;, where V; = (0,27) x R and
V; = (—m, ) x R. Note that ViNnV; = ((0, 1) x R)U((7, 27t) x R). Furthermore,

» u, if (u,v) € (0,7) x R,
@20 ¢7 (u,v) =
u—2m, if (u,v) € (m,271) x R.

Hence @, o @, is a diffeomorphism. Therefore, {(U;, @1), (U, @2)} is a C®-
atlas on M, turning M into a two-dimensional manifold.

1.(ii). To prove that the inclusion map is C*°, observe that idoio (pi_] Vi = R3
is equal to g; : Vi — R3, defined by g;(u,v) = (cosu,sinu,v). Note that on the
manifold R® we use the atlas (R3,id). Also note that ;' and g; only differ in
the sense that they have different ranges. Since g; is C*°, the claim follows.

2. We shall prove that both local representatives ((p;])*(i*c), i =1,2, are
zero. If f is either of the maps cp;], then f*(i*o) = (1o f)*(0), and (i o
f)(u,v) = (cosu,sinu,v). Hence, f*(i*0) = cosud(cosu) + sinud(sinu) =
—cosusinudu+ sinucosudu = 0.



Assignment 2. (25 pt.)
Let X be a vector field on R3, and let Q = dx; A dx; A dx3, a 3-form on R3.
Recall that, for a k-form w, k > 0, the (k — 1)-form txw is defined by

XWXy .oy Xie1) = (X, Xqy 000y X)),
1. (8 pt.) Let o1,...,03 be one-forms on R3. Show that
x(o1 Aoxy AN o3) =01(X) o2 Aoz —02(X) o1 A\ o3+ 03(X) o7 A oo,

2. (7 pt.) Prove that for every 2-form w on R3 there is a vector field Z on R3
such that

w = 17Q.

3. (10 pt.) Prove that d(1xQ) = 0 if and only if there is a vector field Y on R3
such that X =V x Y (the rotation of Y, also known as the curl of Y).

Solution.
1. Let X; and X, be arbitrary vector fields on R3, then

_ 02(X1) 02(X2)| 01(X1)  o1(Xy)
=aX) 02(X1) 03(X32) 72(X) 03(Xy) 03(X2)
o1(X1) 01(X32)
os(X) 2(X1) 02(X7)

= 01(X) 02 A\ 03(X3, X2) — 02(X) 071 A\ 03(X1, X2) + 03(X) 071 A\ 02(X1, X2)
= (01(X) 02 A\ 03 — 02(X) 01 A\ 03 + 03(X) 071 A\ 02) (X7, X3).

2. Let w = f; dX* Adx3 —f, dx! Adx3 +f3 dx' A dx?, Taking o; = dx' in part 1,
we see that w = 1xQ if we take X such that dx!(X) = f;, i.e., if X = Y7, f; 0

foxt
0 0 0
3. Let Y =fi— +f,— + f3—=. Th
© 1E)x1 + Zaxz + 36X3 e
0f3 ofy. 0 of3 of;, 0 ofy of;. 0
VxY=(————"3)——(———=)—+(—%F— —=)—5.
(axz 6x3)6x1 (6x1 3 ox? (6x1 ax2)6x3
Therefore,
af3 afz 2 3 afg af] 1 3 afz af] 1 2
L Q=(—=——2)dx*Ndx°—(— ———= ) dx Ndx°+(—5 —— ) dx' Adx".
vy (axz 6x3) (ax1 ax3) (6x1 axz)

In other words, tyxyQ = dn, for n = fy dx' + f, dx? + f3 dx>. This shows that
dixQ=0for X=V xY.



Conversely, if dixQ) = 0, then by Poincaré’s Lemma there is a one-form n
on R3 such that 1xQ = dn. Let n = f;dx' + f, dx? + f3dx3, then X =V x Y

0 0 0
forY=11— +fH—= + 3.
o ]GXI + zaxz + 36x3

Assignments 3 and 4 on next page




Assignment 3. (20 pt.)

In this exercise M and N are C*°-manifolds, and F: N — M is a C*-map.
For p € N the map F* : C?fp)(N) — Cg"(M) is the usual pullback given by
F(g)=goF.

1. (5 pt.) Assume that F* is surjective. Prove that F., : T,N — T )M is
injective.

Let f: R™! — R be a C*™-function for which 0 is a regular value. Therefore,
N = F1(0) is a C*-submanifold of R™t'.

Recall that a function g : U — R, defined on an open subset U of N, is C*°
if for every p € U there is a neighborhood V of p in R™' and a C*-function
§:V — Rsuch that g=§ on VNU. Let i: N — R™"! be the inclusion map.

2. (5 pt.) Prove that i*: CgO(R““) — Cp°(N) is surjective for p € N.
3. (3 pt.) Prove that i.p : T,(N) — T,(R™') is injective for p € N.

4. (7 pt.) Consider the map f,, : T,R™™ — ToR for p € N.
Prove that i, (T, (N)) = ker f, .

Solution.

1. Since F, is a linear map, we have to prove that ker F, = {0}. Let X, € T,N
and assume F,(X;,) = 0. We have to show that X, =0, , i.e., that X,(f) =0
for all f € C3°(N). So let f € C;°(N), then thereisa g € C?fp)(M) such that
f =Fog. Then, for all f € C°(N):

Xp(f) = Xp(FO g) = (F*(Xp))(g) =0.

Therefore, X, = 0, so F, is injective.

2. Let a germ in C3°(N) be represented by a C* function g: U — R, where U
is a neighborhood of p in N. Then there is a C* function §: V — R defined on
a neighborhood V in R™*!, such that g = § on UNV. In other words, g = §oi
on the neighborhood UNV of p in N, so [g] = [§ o i] = i1*[§].

3. This result is a straightforward consequence of Parts 1 and 2 of this exercise.

4. Note that kerf, , is an n-dimensional subspace of TPR““. Part 3 implies
that i, ,(T,N) is also an n-dimensional subspace of TPR““, so it is sufficient
to prove that i,,(T,N) C kerf,,. This inclusion follows from the fact that
foi:N — R is the zero-function, so f,p oi.p = (foi)yp =0. O

Assignment 4. (25 pt.)

Let f : R — R be a C*-function such that f|s; = 0. Here S! is the unit circle in
R?, the boundary of the closed unit disc B? in R%. The goal of this assignment
is to prove that if f is harmonic, i.e., if the Laplacian of f is zero on B?, then
f =0 on B



As usual, the Laplacian Af of f is given by
o O
0x oy
1. (8 pt.) Determine a one-form w on R? such that dw = (Af)dx A dy.
2. (9 pt.) Prove that

of of
JBZ (fAf + (&)2 + (@)2) dx A dy =0.

Hint: prove that the integrand is equal to di for P = fw and w as in Part 1
of this assignment.

3. (8 pt.) Prove: If Af =0 on B, then flg, =0.

Solution.
1. Let w = adx + bdy for C*°-functions a,b : R? — R. Then

dw=(—=—+ —)dxAd
w = ( oy + 6x) x /\ dy,
so we have to determine a and b such that

a0 _ o o

“oy T ol T g

A solution is a = —% and b = ﬁ, ie.,
y 0x

2. A straightforward computation shows that the integrand is equal to di, with
P = fw. Now apply Stokes’s Theorem:

gz ﬁz _ _ _ _
JBz(fAer(aX) +(z,) )dx/\dy—JBZdlb—JS11b—JS] fw=0. (1)

3. If Af =0 on B2, we get from (1):

of , of, -
JBZ((aX) + (5 ) dxAdy =0

Since the integrand is non-negative, it has to be identically zero. This implies
that

of  of

_— = — = O

ox Jy
on B?. Hence, f is constant on B2. Since flg1 = 0, this constant is equal to
ZETO. O



