Exam Analysis on Manifolds

WIANVAR-07.2018-2019.1B
January 29, 2019
This exam consists of four assignments. You get 10 points for free.

Assignment 1. (20 pt.)

Let $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}$, and let $i: M \rightarrow \mathbb{R}^{3}$ be the inclusion map. We turn M into a topological space by endowing it with the subspace topology inherited from \mathbb{R}^{3}. You may assume that this subspace topology of M is second-countable, and that M with this topology is a Hausdorff space.

1. Construct an atlas on M such that:
(i) (7 pt.) M becomes a two-dimensional C^{∞}-manifold;
(ii) (5 pt.) the inclusion map i is a C^{∞}-map.
2. (8 pt.) Let σ be the one-form on \mathbb{R}^{3} given by $\sigma=x d x+y d y$.

Prove that $i^{*} \sigma=0$.

Solution.

1.(i) Note that M is the Cartesian product of the unit circle in \mathbb{R}^{2} and the real line \mathbb{R}. We will construct an atlas on M based on this observation. To this end, let $\mathrm{U}_{1}=\{(\cos u, \sin u, v) \mid 0<u<2 \pi, v \in \mathbb{R}\}$ and let $\mathrm{U}_{2}=\{(\cos u, \sin u, v) \mid$ $-\pi<u<\pi, v \in \mathbb{R}\}$. Let $\varphi_{i}: \mathrm{U}_{i} \rightarrow \mathbb{R}^{2}$ be defined by

$$
\varphi_{i}(\cos u, \sin u, v)=(u, v)
$$

Then φ_{i} is a homeomorphism onto its image V_{i}, where $V_{1}=(0,2 \pi) \times \mathbb{R}$ and $\mathrm{V}_{2}=(-\pi, \pi) \times \mathbb{R}$. Note that $\mathrm{V}_{1} \cap \mathrm{~V}_{2}=((0, \pi) \times \mathbb{R}) \cup((\pi, 2 \pi) \times \mathbb{R})$. Furthermore,

$$
\varphi_{2} \circ \varphi_{1}^{-1}(u, v)= \begin{cases}u, & \text { if }(u, v) \in(0, \pi) \times \mathbb{R} \\ u-2 \pi, & \text { if }(u, v) \in(\pi, 2 \pi) \times \mathbb{R}\end{cases}
$$

Hence $\varphi_{2} \circ \varphi_{1}^{-1}$ is a diffeomorphism. Therefore, $\left\{\left(\mathrm{U}_{1}, \varphi_{1}\right),\left(\mathrm{U}_{2}, \varphi_{2}\right)\right\}$ is a C^{∞} atlas on M, turning M into a two-dimensional manifold.
1.(ii). To prove that the inclusion map is C^{∞}, observe that id $\circ i \circ \varphi_{i}^{-1}: V_{i} \rightarrow \mathbb{R}^{3}$ is equal to $g_{i}: V_{i} \rightarrow \mathbb{R}^{3}$, defined by $g_{i}(u, v)=(\cos u, \sin u, v)$. Note that on the manifold \mathbb{R}^{3} we use the atlas $\left(\mathbb{R}^{3}, i d\right)$. Also note that φ_{i}^{-1} and g_{i} only differ in the sense that they have different ranges. Since g_{i} is C^{∞}, the claim follows.
2. We shall prove that both local representatives $\left(\varphi_{i}^{-1}\right)^{*}\left(i^{*} \sigma\right), i=1,2$, are zero. If f is either of the maps φ_{i}^{-1}, then $f^{*}\left(i^{*} \sigma\right)=(i \circ f)^{*}(\sigma)$, and ($i \circ$ f) $(u, v)=(\cos u, \sin u, v)$. Hence, $f^{*}\left(i^{*} \sigma\right)=\cos u d(\cos u)+\sin u d(\sin u)=$ $-\cos u \sin u d u+\sin u \cos u d u=0$.

Assignment 2. (25 pt.)
Let X be a vector field on \mathbb{R}^{3}, and let $\Omega=d x_{1} \wedge d x_{2} \wedge d x_{3}$, a 3-form on \mathbb{R}^{3}. Recall that, for a k-form $\omega, k>0$, the $(k-1)$-form $l_{X} \omega$ is defined by

$$
\iota_{X} \omega\left(X_{1}, \ldots, X_{k-1}\right)=\omega\left(X, X_{1}, \ldots, X_{k-1}\right)
$$

1. (8 pt.) Let $\sigma_{1}, \ldots, \sigma_{3}$ be one-forms on \mathbb{R}^{3}. Show that

$$
\iota_{X}\left(\sigma_{1} \wedge \sigma_{2} \wedge \sigma_{3}\right)=\sigma_{1}(X) \sigma_{2} \wedge \sigma_{3}-\sigma_{2}(X) \sigma_{1} \wedge \sigma_{3}+\sigma_{3}(X) \sigma_{1} \wedge \sigma_{2}
$$

2. (7 pt.) Prove that for every 2-form ω on \mathbb{R}^{3} there is a vector field Z on \mathbb{R}^{3} such that

$$
\omega=\iota_{z} \Omega
$$

3. (10 pt.) Prove that $d\left(\iota_{X} \Omega\right)=0$ if and only if there is a vector field Y on \mathbb{R}^{3} such that $X=\nabla \times Y$ (the rotation of Y, also known as the curl of Y).

Solution.

1. Let X_{1} and X_{2} be arbitrary vector fields on \mathbb{R}^{3}, then

$$
\begin{aligned}
& \mathfrak{t}_{X}\left(\sigma_{1} \wedge \sigma_{2} \wedge \sigma_{3}\right)\left(X_{1}, X_{2}\right)=\left|\begin{array}{lll}
\sigma_{1}(X) & \sigma_{1}\left(X_{1}\right) & \sigma_{1}\left(X_{2}\right) \\
\sigma_{2}(X) & \sigma_{2}\left(X_{1}\right) & \sigma_{2}\left(X_{2}\right) \\
\sigma_{3}(X) & \sigma_{3}\left(X_{1}\right) & \sigma_{3}\left(X_{2}\right)
\end{array}\right| \\
& \quad=\sigma_{1}(X)\left|\begin{array}{ll}
\sigma_{2}\left(X_{1}\right) & \sigma_{2}\left(X_{2}\right) \\
\sigma_{2}\left(X_{1}\right) & \sigma_{3}\left(X_{2}\right)
\end{array}\right|-\sigma_{2}(X)\left|\begin{array}{ll}
\sigma_{1}\left(X_{1}\right) & \sigma_{1}\left(X_{2}\right) \\
\sigma_{3}\left(X_{1}\right) & \sigma_{3}\left(X_{2}\right)
\end{array}\right| \\
& \quad+\sigma_{3}(X)\left|\begin{array}{ll}
\sigma_{1}\left(X_{1}\right) & \sigma_{1}\left(X_{2}\right) \\
\sigma_{2}\left(X_{1}\right) & \sigma_{2}\left(X_{2}\right)
\end{array}\right| \\
& \quad \\
& \quad=\sigma_{1}(X) \sigma_{2} \wedge \sigma_{3}\left(X_{1}, X_{2}\right)-\sigma_{2}(X) \sigma_{1} \wedge \sigma_{3}\left(X_{1}, X_{2}\right)+\sigma_{3}(X) \sigma_{1} \wedge \sigma_{2}\left(X_{1}, X_{2}\right) \\
& = \\
& \quad\left(\sigma_{1}(X) \sigma_{2} \wedge \sigma_{3}-\sigma_{2}(X) \sigma_{1} \wedge \sigma_{3}+\sigma_{3}(X) \sigma_{1} \wedge \sigma_{2}\right)\left(X_{1}, X_{2}\right)
\end{aligned}
$$

2. Let $\omega=f_{1} d x^{2} \wedge d x^{3}-f_{2} d x^{1} \wedge d x^{3}+f_{3} d x^{1} \wedge d x^{2}$, Taking $\sigma_{i}=d x^{i}$ in part 1 , we see that $\omega=\mathfrak{t}_{X} \Omega$ if we take X such that $d x^{i}(X)=f_{i}$, i.e., if $X=\sum_{i=1}^{3} f_{i} \frac{\partial}{\partial x^{i}}$.
3. Let $Y=f_{1} \frac{\partial}{\partial x^{1}}+f_{2} \frac{\partial}{\partial x^{2}}+f_{3} \frac{\partial}{\partial x^{3}}$. Then

$$
\nabla \times Y=\left(\frac{\partial f_{3}}{\partial x^{2}}-\frac{\partial f_{2}}{\partial x^{3}}\right) \frac{\partial}{\partial x^{1}}-\left(\frac{\partial f_{3}}{\partial x^{1}}-\frac{\partial f_{1}}{\partial x^{3}}\right) \frac{\partial}{\partial x^{2}}+\left(\frac{\partial f_{2}}{\partial x^{1}}-\frac{\partial f_{1}}{\partial x^{2}}\right) \frac{\partial}{\partial x^{3}}
$$

Therefore,
${ }^{\iota} \nabla_{\times Y} \Omega=\left(\frac{\partial f_{3}}{\partial x^{2}}-\frac{\partial f_{2}}{\partial x^{3}}\right) d x^{2} \wedge d x^{3}-\left(\frac{\partial f_{3}}{\partial x^{1}}-\frac{\partial f_{1}}{\partial x^{3}}\right) d x^{1} \wedge d x^{3}+\left(\frac{\partial f_{2}}{\partial x^{1}}-\frac{\partial f_{1}}{\partial x^{2}}\right) d x^{1} \wedge d x^{2}$.
In other words, $\iota_{\nabla \times Y} \Omega=d \eta$, for $\eta=f_{1} d x^{1}+f_{2} d x^{2}+f_{3} d x^{3}$. This shows that $d \iota_{X} \Omega=0$ for $X=\nabla \times Y$.

Conversely, if $d t_{\chi} \Omega=0$, then by Poincaré's Lemma there is a one-form η on \mathbb{R}^{3} such that $t_{x} \Omega=d \eta$. Let $\eta=f_{1} d x^{1}+f_{2} d x^{2}+f_{3} d x^{3}$, then $X=\nabla \times Y$ for $Y=f_{1} \frac{\partial}{\partial x^{1}}+f_{2} \frac{\partial}{\partial x^{2}}+f_{3} \frac{\partial}{\partial x^{3}}$.

Assignment 3. (20 pt.)
In this exercise M and N are C^{∞}-manifolds, and $F: N \rightarrow M$ is a C^{∞}-map. For $p \in N$ the $\operatorname{map} F^{*}: C_{F(p)}^{\infty}(N) \rightarrow C_{p}^{\infty}(M)$ is the usual pullback given by $F^{*}(g)=g \circ F$.

1. (5 pt.) Assume that F^{*} is surjective. Prove that $F_{*, p}: T_{p} N \rightarrow T_{F(p)} M$ is injective.

Let $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be a C^{∞}-function for which 0 is a regular value. Therefore, $N=F^{-1}(0)$ is a C^{∞}-submanifold of \mathbb{R}^{n+1}.

Recall that a function $g: U \rightarrow \mathbb{R}$, defined on an open subset U of N, is C^{∞} if for every $p \in U$ there is a neighborhood V of p in \mathbb{R}^{n+1} and a C^{∞}-function $\tilde{g}: V \rightarrow \mathbb{R}$ such that $g=\tilde{g}$ on $V \cap U$. Let $i: N \rightarrow \mathbb{R}^{n+1}$ be the inclusion map.
2. (5 pt.) Prove that $i^{*}: C_{p}^{\infty}\left(\mathbb{R}^{n+1}\right) \rightarrow C_{p}^{\infty}(N)$ is surjective for $p \in N$.
3. (3 pt.) Prove that $i_{*, p}: T_{p}(N) \rightarrow T_{p}\left(\mathbb{R}^{n+1}\right)$ is injective for $p \in N$.
4. (7 pt.) Consider the $\operatorname{map} f_{*, p}: T_{p} \mathbb{R}^{n+1} \rightarrow T_{0} \mathbb{R}$ for $p \in N$.

Prove that $i_{*, p}\left(T_{p}(N)\right)=\operatorname{ker} f_{*, p}$.

Solution.

1. Since F_{*} is a linear map, we have to prove that ker $F_{*}=\{0\}$. Let $X_{p} \in T_{p} N$ and assume $F_{*}\left(X_{p}\right)=0$. We have to show that $X_{p}=0$, , i.e., that $X_{p}(f)=0$ for all $f \in C_{p}^{\infty}(N)$. So let $f \in C_{p}^{\infty}(N)$, then there is a $g \in C_{F(p)}^{\infty}(M)$ such that $f=F \circ g$. Then, for all $f \in C_{p}^{\infty}(N)$:

$$
X_{p}(f)=X_{p}(F \circ g)=\left(F_{*}\left(X_{p}\right)\right)(g)=0
$$

Therefore, $X_{p}=0$, so F_{*} is injective.
2. Let a germ in $C_{p}^{\infty}(N)$ be represented by a C^{∞} function $g: U \rightarrow \mathbb{R}$, where U is a neighborhood of p in N. Then there is a C^{∞} function $\tilde{g}: V \rightarrow \mathbb{R}$ defined on a neighborhood V in \mathbb{R}^{n+1}, such that $g=\tilde{g}$ on $U \cap V$. In other words, $g=\tilde{g} \circ i$ on the neighborhood $\mathrm{U} \cap \mathrm{V}$ of p in N , so $[\mathrm{g}]=[\tilde{g} \circ i]=\mathrm{i}^{*}[\tilde{g}]$.
3. This result is a straightforward consequence of Parts 1 and 2 of this exercise.
4. Note that $\operatorname{ker} f_{*, p}$ is an n-dimensional subspace of $T_{p} \mathbb{R}^{n+1}$. Part 3 implies that $i_{*, p}\left(T_{p} N\right)$ is also an n-dimensional subspace of $T_{p} \mathbb{R}^{n+1}$, so it is sufficient to prove that $i_{*, p}\left(T_{p} N\right) \subset \operatorname{ker}_{*, p}$. This inclusion follows from the fact that $f \circ i: N \rightarrow \mathbb{R}$ is the zero-function, so $f_{*, p} \circ i_{*, p}=(f \circ i)_{*, p}=0$.

Assignment 4. (25 pt.)
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a C^{∞}-function such that $\left.f\right|_{\mathbb{S}^{1}}=0$. Here \mathbb{S}^{1} is the unit circle in \mathbb{R}^{2}, the boundary of the closed unit disc \mathbb{B}^{2} in \mathbb{R}^{2}. The goal of this assignment is to prove that if f is harmonic, i.e., if the Laplacian of f is zero on \mathbb{B}^{2}, then $f=0$ on \mathbb{B}^{2}.

As usual, the Laplacian $\Delta \mathrm{f}$ of f is given by

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

1. (8 pt.) Determine a one-form ω on \mathbb{R}^{2} such that $d \omega=(\Delta f) d x \wedge d y$.
2. (9 pt.) Prove that

$$
\int_{\mathbb{B}^{2}}\left(f \Delta f+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}\right) d x \wedge d y=0 .
$$

Hint: prove that the integrand is equal to $d \psi$ for $\psi=\mathrm{f} \omega$ and ω as in Part 1 of this assignment.
3. (8 pt.) Prove: If $\Delta f=0$ on \mathbb{B}^{2}, then $\left.\right|_{\mathbb{B}^{2}}=0$.

Solution.

1. Let $\omega=a d x+b d y$ for C^{∞}-functions $a, b: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Then

$$
d \omega=\left(-\frac{\partial a}{\partial y}+\frac{\partial b}{\partial x}\right) d x \wedge d y
$$

so we have to determine a and b such that

$$
-\frac{\partial a}{\partial y}+\frac{\partial b}{\partial x}=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

A solution is $a=-\frac{\partial f}{\partial y}$ and $b=\frac{\partial f}{\partial x}$, i.e.,

$$
\omega=-\frac{\partial f}{\partial y} d x+\frac{\partial f}{\partial x} d y .
$$

2. A straightforward computation shows that the integrand is equal to $d \psi$, with $\psi=\mathrm{f} \omega$. Now apply Stokes's Theorem:

$$
\begin{equation*}
\int_{\mathbb{B}^{2}}\left(f \Delta f+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}\right) d x \wedge d y=\int_{\mathbb{B}^{2}} d \psi=\int_{\mathbb{S}^{1}} \psi=\int_{\mathbb{S}^{1}} f \omega=0 . \tag{1}
\end{equation*}
$$

3. If $\Delta f=0$ on \mathbb{B}^{2}, we get from (1):

$$
\int_{\mathbb{B}^{2}}\left(\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}\right) d x \wedge d y=0
$$

Since the integrand is non-negative, it has to be identically zero. This implies that

$$
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=0
$$

on \mathbb{B}^{2}. Hence, f is constant on \mathbb{B}^{2}. Since $\left.f\right|_{\mathbb{S}^{1}}=0$, this constant is equal to zero.

